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In this paper, we characterize minimax and Pareto-optimal security payoff vectors 
for general multicriteria zero-sum matrix games, using properties similar to the ones 
that have been used in the single criterion case. Our results show that these two 
solution concepts are rather similar, since they can be characterized with nearly the 
same sets of properties. Their main difference is the form of consistency that each 
solution concept satisfies. We also prove that both solution concepts can transform 
into each other, in their corresponding domains.
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1. Introduction

The standard two-person zero-sum game was introduced by von Neumann [14]. Ever since then, extensive 
research has been devoted to these games. Even nowadays the interest on these games has not decreased, see 
e.g. [13], who analyze how players’ information affect their payoffs. We here elaborate on the Multicriteria 
Zero-Sum Matrix (MZSM) games, which allow us to handle simultaneous confrontation of two rational agents 
in several scenarios. The first game theoretical characterizations of minimax values in MZSM games is due 
to Shapley [20]. In its introductory note, F.D. Rigby remarks the importance of these games: “The topic 
of games with vector payoffs is one which could be expected to attract attention on the basis of its intrinsic 
interest”. Nevertheless, the development of the theory of multicriteria games has not been as successful 
as expected. There is a number of references in the literature as we will see along the paper, although 
its intrinsic difficulty, mainly due to the lack of total orderings among players’ payoffs, has diminished 
the interest of researchers. In spite of that, the goal of further developing the analysis of multicriteria 
games should not be forgotten. In fact, each competitive situation that can be modeled as a scalar zero-sum 
game has its counterpart as a multicriteria zero-sum game, when more than one scenario has to be compared 
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simultaneously. Moreover, different scenarios do not need to have the same set (number) of strategies, which 
makes the analysis even more challenging. Thus, conflicting interests appear not only between different 
decision-makers but also within each individual, due to the different criteria they may have. For instance, 
the production policies of two firms which are competing for a market can be seen as a scalar game. 
However, when they compete simultaneously in several markets and the returns in each one of them cannot 
be aggregated, the multicriteria approach naturally leads to a multicriteria game. The main criticism made 
to this approach is its difficulty to be applied, because in most cases the solutions (values) are not unique. 
Therefore, new solution concepts have been proposed and compared with the existing ones.

When dealing with scalar zero sum matrix games, a natural question one wants to answer is the following: 
“If I play a strategy, what is the worst (to me) that the other player may do? To anticipate this, I will play 
the strategy that makes my worst case scenario as pleasant as possible.” This question leads to a well 
accepted solution concept for scalar zero sum matrix games: the minimax solution, also known as the value 
of the game. The first characterization in terms of axioms of the value of a zero-sum matrix game is due 
to Vilkas [22]. Later, Tijs [21] addressed the same problem, whereas more recently Norde and Voorneveld 
[17] and Carpente et al. [4] provided different axiomatizations for the value of standard zero-sum matrix 
games. Hart et al. [12] give a Bayesian foundation of minimax values. In a natural extension to more than 
one criterion, players have to play the same strategy in all the different scenarios.

One of the most attractive alternatives to minimax payoff vectors is the concept of Pareto-optimal 
security level vectors (POSLV). Pareto-optimal security strategies (POSS) were introduced by Ghose and 
Prasad [11] as a solution concept in multicriteria zero-sum matrix games, extending the idea of security level 
strategies to more than one criterion, where players are allowed to play different strategies in each component. 
Ghose [10] characterized this solution concept as minimax strategies in a serial weighted zero-sum game, 
whereas Voorneveld [23] gave an alternative characterization of these strategies as minimax strategies of an 
amalgamated game (see [1] for the concept of amalgamation of games). Alternatively, Fernández and Puerto 
[6] provided a way to jointly determine POSS and their corresponding set of payoffs by solving a certain 
multiobjective linear program (see also [5,7,8]).

Although there exist axiomatic foundations for the minimax value of one-criteria zero-sum games, there 
is no characterization for the set of minimax values in the multicriteria version. On the other hand, there 
are several axiomatizations of Nash equilibrium strategies (see e.g. Peleg and Tijs [19], Peleg et al. [18]
and Norde et al. [16]). Some of these carry over to multicriteria games, as shown in Borm et al. [2] and 
Voorneveld et al. [24]. Nevertheless, these are axiomatizations for strategy sets rather than for payoffs, they 
use different sets of axioms, and they do not clearly show the relationship between the two solutions.

In standard single criterion games, minimax and optimal security payoffs coincide. Nevertheless, whenever 
we have multiple criteria, which in turns may imply to have a different set (and number) of strategies in 
each component game, these two concepts differ. This fact raises the question of which are the common 
roots and which are the main differences between these two solution concepts. We will answer this question 
by providing characterizations that show the common properties and the differences between them.

In this paper we characterize extensions of minimax and Pareto-optimal security payoffs to general mul-
ticriteria zero-sum matrix games. Our approach uses classical properties in game theory and decision theory 
(objectivity, column dominance, column elimination, row dominance, row elimination and consistency). The 
contribution of this paper is twofold:

– we characterize solution sets rather than single value solutions which makes the analysis more involved. In 
this regard, we are interested in finding the largest set of payoffs compatible with the axioms proposed. 
This property is rather important when dealing with set-valued functions (correspondences) since it 
ensures that this is the largest object (solution concept) satisfying the required game theoretic properties. 
This approach is not new and has been already used among others by Gerard-Varet and Zamir [9] for 
characterizing the ‘Reasonable set of outcomes’ and Calleja et al. [3] for the ‘Aggregate-monotonic core’.
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– we use a new consistency property that deals with the persistence of any solution payoff of a multicriteria 
game, with any given dimension on the space of criteria, on some lower dimension multicriteria game. 
The difference between this new consistency property and the traditional one, is the way in which 
solutions for a game with k criteria transform into solutions for a game with k − 1 criteria. Extended 
minimax payoff vectors, in a multicriteria game with k-criteria, can be converted to extended minimax 
payoff vectors in a new (k − 1)-criteria game, that makes a convex combination of two of the original 
payoff matrices. However, Pareto-optimal security payoff vectors become solutions of a game with k− 1
criteria, but with an amalgamation of strategies from two of the previous matrices. This difference is 
crucial and distinguishes the two solution concepts.

The rest of the paper is organized as follows. In Section 2 we present the basic definitions of the multi-
criteria games, in which we will define the two solution concepts that are the aim of this paper. In Section 3
we formally define the minimax solution concept, and characterize it using a number of axioms. Section 4 is 
devoted to the definition and characterization of the set of Pareto-optimal security level vectors. Section 5
is devoted to analyzing the pairwise logical independence of the axioms used in the characterizations pre-
sented. Next, in Section 6, we analyze the relationships between the two solution concepts. The paper ends 
with some conclusions, drawn from the results in the paper.

2. Multicriteria games

Let us begin by recalling the concept of scalar two-person zero-sum games.

Definition 1. A scalar two-person zero sum game is characterized by a payoff matrix A ∈ Rm×n, such that 
if player I (the row player, who wants to minimize payoffs) plays his strategy i and player II (the column 
player, who wants to maximize payoffs) plays his strategy j, then the row player’s payoff is aij and the 
column player’s is −aij , for i = 1, ..., m, j = 1, ..., n. The set of pure strategies of player I consists of m
strategies, indexed by i, and the set of pure strategies of player II consists of n strategies, indexed by j. 
Furthermore, the set of (mixed) strategies for player I is

Sm := {s ∈ Rm :
m∑
i=1

si = 1; si ≥ 0, i = 1, ...,m},

whereas the set of (mixed) strategies for player II is Sn. In the sequel, at times we will make use of the set 
S>
m, defined as the vectors in Sm with all its components strictly positive.
Note that if player I plays x ∈ Sm and player II plays y ∈ Sm, the payoff of player I is xtAy ∈ R, whereas 

player II gets the opposite. The value of the game A is defined as val(A) := maxy∈Sn
minx∈Sm

xtAy =
minx∈Sm

maxy∈Sn
xtAy, which always exists (see [14]).

The traditional multicriteria approach assumes that the payoffs of the players are vectors instead of 
scalars. The next definition recalls this class of games, which we here denote as D1.

Definition 2. Consider an array of matrices A = (A(1), ..., A(k)) ∈ Rm×n×k, with A(�) ∈ Rm×n ∀ � =
1, ..., k. If player I plays x ∈ Sm and player II plays y ∈ Sn, the expected payoff for player I is xtAy =
(xtA(1)y, ..., xtA(k)y) ∈ Rk, and player II gets the opposite. In summary, D1 = ∪n,m,k∈NRm×n×k.

Note that a game in D1 is uniquely characterized by its payoff matrix A, since the strategy sets only 
depend on the dimensions of this matrix.
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Note as well that, in games in D1, each player plays the same strategy in the k payoff matrices. The 
following class of games, denoted by D2, allows the column player to play different strategies in the different 
scenarios.

Definition 3. Consider an array of matrices A = (A(1), ..., A(k)) with A(�) ∈ Rm×n� for � = 1, ..., k (note 
that there could be a different number of available strategies for the second player in the different payoff 
matrices). Let Gk =

⋃
m,n1,...,nk∈N

Rm×n1 × ... ×Rm×nk be the set of all such k-criteria matrices. Define the 
strategy spaces for players I and II as Sm and S(n1,...,nk), where

S(n1,...,nk) := {y = (y(1), . . . , y(k)) ∈ Rn1 × . . .× Rnk :
∑n�

j=1 y(�)j = 1; y(�)j ≥ 0,
j = 1, . . . , n�, � = 1 . . . k}.

If player I plays x ∈ Sm, and player II plays y ∈ S(n1,...,nk), the payoff of player I is

xtAy = (xtA(1)y(1), . . . , xtA(k)y(k)), (1)

and player II gets the opposite. In summary, D2 = ∪k∈NGk.

Note that a game in D2 is uniquely characterized by its payoff matrix A, since the strategy sets only 
depend on the dimensions of the matrix.

For the sake of notation we will refer to Rm×n1 × . . . × Rm×nk as Rm×(n1,...,nk). The following example 
illustrates this class of games.

Example 1. Let F1 and F2 be two companies that form a duopoly competing in the same sector. The payoffs 
of this game will be monetary benefit and public image, measured in units that are not easily quantifiable 
economically. Company F1 has to face one decision: whether or not to invest in advertising (strategies 
Y and N , respectively). Company F2 has to face two decisions: whether or not to invest in advertising 
(strategies Y and N , respectively), and what to do about the polluting emissions its factory produces. 
Three different strategies are possible in this scenario: increase, leave as it is, decrease (denoted by I, L, D).

Both companies know that if the two of them invest in advertising or none of them does, then their 
monetary benefit does not increase nor decrease. On the contrary, if one of them invests and the other 
does not, the company investing will have one extra unit of benefit and the other company one less unit of 
benefit.

If F2 increases the polluting emissions and F1 invests in publicity, F1 will use this fact in its campaign, 
and the public image of F2 will deteriorate, and that of F1 will improve, both by two units. In case F1
would not invest in advertising, the extra emissions will be somehow found out and the public image of F2
will deteriorate, and that of F1 will improve, both by 1 unit. If F2 decreases its emissions and F1 does not 
invest in publicity, the public image of F2 will improve, and that of F1 will deteriorate, both by one unit. An 
advertising campaign of F1 will compensate this fact, and the improvement/deterioration in public image 
will be of 0.5 units only.

This situation can be modeled as a game in D2, with m = k = n1 = 2, n2 = 3 and the payoff matrix 
A = (A(1), A(2)), where A(1) and A(2) are:

A = (A(1), A(2)) =
((

0 −1
1 0

)
,

(
−2 0 0.5
−1 0 1

))
.

Note that, in order to be consistent with the fact that player I is the minimizer and player II is the maximizer, 
the payoffs described before have been multiplied times −1 when building matrix A. To illustrate, two 
possible such strategies are:
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1. x = (1, 0) and y = ((0, 1), (0, 1, 0)) are two pure strategies, that yield a payoff for player I equal to (0, 0)
(player II gets the opposite).

2. x = (0.5, 0.5) and y = ((0.25, 0.75), (0.5, 0, 0.5)) are two mixed strategies, that yield a payoff for player 
I equal to (−0.25, −0.375).

Both for D1 and D2, the scalar zero-sum game defined by the matrix A(�), � = 1 . . . k, will be called the 
�-component game or �-scenario of the corresponding multicriteria game A = (A(1), ..., A(k)).

In the sequel, the transpose operator t will be omitted when its use is clear. Before finishing this section, 
we introduce some notation that will be used in the rest of the paper.

– Bi· refers to the i-th row of B, and B·j refers to the j-th column of B, for any matrix B ∈ Rn×m, 
n,m ∈ N.

– Given two vectors a, b ∈ Rk, a ≤ b if and only if a� ≤ b� for � = 1, ..., k, and a � b if a ≤ b and a �= b.
– MIN (MAX) stands for the set of minimal (maximal) elements with respect to the componentwise 

order of Rk. So, for any S ∈ Rk, MIN(S) = {s ∈ S : there is no t ∈ S − {s} : ti ≤ si ∀ i = 1, ..., k}
(MAX is defined analogously).

3. Minimax in D1

The multicriteria extension of the concept of minimax payoff looses some of the interesting properties 
shown in the scalar case: uniqueness and coincidence with security payoffs. In spite of that, it is still possible 
to establish the existence of such strategies under rather standard hypothesis. For instance, if the strategy 
set is compact, the set of minimax payoff vectors is non-empty, see [15].

The rationale behind minimax strategies is that each player uses the same strategy, in all the k-component 
games, looking for all the non-dominated vector valued payoffs. This rationale is possible in the domain D1, 
and so we shall consider multicriteria games defined on this domain to analyze multicriteria minimax payoff 
vectors.

Therefore, define as w1(x) the worst payoffs player I can get if he/she plays strategy x ∈ Sm,

w1(x) := MAX{(xA(1)y, . . . , xA(k)y), y ∈ Sn}. (2)

Now, among those strategies that give componentwise maximal payoffs in the above problems, player I will 
choose the strategies with the best payoff. Note that best (worst) for player I must be understood as finding 
the set of minimal (maximal) elements in the componentwise ordering of Rk.

Definition 4. The set of extended minimax payoffs of the game A ∈ D1 is given by:

MINMAXk(A(1), . . . , A(k)) = MIN{∪x∈Sm
w1(x)}, (3)

where k is the number of different criteria. Similarly, one can define maximin payoffs.

According to the above expression, the extended minimax payoff vectors are the non-dominated vectors 
obtained from the solutions to all the vector valued maximization problems (2), for all x ∈ Sm. Clearly, if 
B ∈ Rm×p then MINMAX1(B) = val(B).

After defining the extended minimax payoff vectors, the concept of extended minimax strategy naturally 
follows.

Definition 5. An extended minimax strategy of player I is any strategy x ∈ Sm attaining an extended 
minimax payoff vector. Similarly, one can define extended maximin strategies of player II.
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The first result about extended minimax payoff vectors in multicriteria games was given by Shapley 
[20], who provides a simple way for finding them by solving zero-sum scalar games with payoff matrix 
A(α) =

∑k
�=1 α�A(�), a positive linear combination of the matrices A(�), � = 1, . . . , k.

Theorem 1 (Adapted from [20]). Let z∗ be an extended minimax value for the multicriteria game with matrix 
A = (A(1), . . . , A(k)). Then, there exists α ∈ S>

k such that 
∑k

�=1 α�z
∗
� = val (

∑k
�=1 α�A(�)).

Conversely, let z∗(α) be the minimax value of (
∑k

�=1 α�A(�)), then there exists an extended minimax 
payoff vector z∗ ∈ MINMAXk(A(1), . . . , A(k)), satisfying 

∑k
�=1 α�z

∗
� = z∗(α).

3.1. A characterization of the set of extended minimax payoff vectors

We begin this section by introducing the axioms that will characterize the set of minimax payoff vectors.
Let {fk}k≥1 be a family of point-to-set maps (correspondences) defined as

fk : ∪n,m∈NR
m×n×k −→ 2R

k

A = (A(1), . . . , A(k)) −→ fk(A).

The axioms needed are:

A0 Objectivity. For any z ∈ Rk, fk(z) = z.
A1 Monotonicity. For any A, A ∈ Rm×n×k such that A ≤ A, fk(A) ⊆ fk(A) + Rk

−.
A2 Column dominance. Let Ac(�) be the matrix that results from A after adding to the matrix A(�) a new 

column which is dominated by a convex combination of its columns. Then fk(Ac(�)) = fk(A).
A3 Column elimination. Let A−c(�) be the matrix that results from A after removing column c(�) from the 

matrix A(�). Then fk(A−c(�)) ⊆ fk(A) + Rk
−.

A4 Row dominance. Let Ar be the matrix that results from A after adding a new row which is dominated 
by a convex combination of its rows. Then fk(Ar) = fk(A).

A5 Row elimination. Let A−r be the matrix that results from A after removing row r. Then fk(A−r) ⊆
fk(A) + Rk

+.
A6 Consistency. For any k ≥ 2, if z ∈ fk(A) then there exists 0 < α < 1, such that

(αz1 + (1 − α)z2, z3, . . . , zk) ∈ fk−1(M(αA(1), (1 − α)A(2)), A(3), . . . , A(k)),

where M(αA(1), (1 −α)A(2)) is a matrix with m rows, labeled i = 1, . . . , m and n1×n2 columns, labeled 
c = (c(1), c(2)) with c(�) ∈ {1, . . . , n�} for each � = 1, 2. The entry in row i and column c = (c(1), c(2))
of M(αA(1), (1 − α)A(2)) equals αA(1)ic(1) + (1 − α)A(2)ic(2), see [23].

A7 Linear consistency. For any k ≥ 2 and A such that n� = n ∀ �, if z ∈ fk(A) then there exists 0 < α < 1
such that (αz1 + (1 − α)z2, z3, . . . , zk) ∈ fk−1((αA(1) + (1 − α)A(2)), A(3), . . . , A(k)).

Objectivity establishes the evaluation in a trivial situation where the game has k criteria and both 
players have exactly one action available. Monotonicity states that the set of solution payoff vectors should 
not decrease, in the componentwise order of Rk, when all the payoff matrices weakly increase. Column 
(row) dominance states that the set of solution payoff vectors should not change if player II (I) can no 
longer choose an action, in some of the component games, which is worse for him/her than a combination of 
some other actions. Column elimination states that the set of solution payoff vectors can not increase their 
values, in the componentwise order of Rk, when some action of player II in some of the component games is 
removed. Row elimination states that, when removing an action of player I, the new set of solution payoff 
vectors must be dominated by the original one. Consistency states that any solution outcome of a game 
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with a given dimension, in the criteria space, can be converted into a solution outcome of a new game with 
lower dimension of an amalgamated game ‘à la’ Borm et al. [1]. Linear consistency states that any solution 
outcome provided by this correspondence, with a given dimension in the criteria space, can be converted 
into a solution outcome of this correspondence with lower dimension, by considering a convex combination 
of two of the original criteria.

The next result is a characterization of the set of extended minimax payoff vectors of any general multi-
criteria zero-sum game.

Theorem 2. The set of extended minimax payoff vectors MINMAXk is the largest (w.r.t. inclusion) map 
on D1, the set of multicriteria zero sum games, that satisfies objectivity, monotonicity, column dominance 
for k = 1, row dominance and linear consistency.

Proof. First of all, we check that MINMAXk satisfies the properties.

A0 – Objectivity: It is clear that MINMAXk satisfies A0.
A1 – Monotonicity: Since x ≥ 0, then xA(�) ≥ xĀ(�) for all � = 1, . . . , k. Hence, for all y ∈ Sn, 

(xA(1)y, . . . , xA(k)y) ≥ (xA(1)y, . . . , xA(k)y), and the property follows.
A2 – Column dominance for k = 1: It is clear that MINMAX1 satisfies column dominance for k = 1, since 

MINMAX1(B) = val(B), and it is known that the value function, val(·), of a matrix game satisfies this 
property, see [4].

A4 – Row dominance: Let Ar =
(
A(1) . . . A(k)
b1 . . . bk

)
, b� = (b1� , . . . , b

n�

� ) ∈ Rn� , � = 1, . . . , k, such that b� =∑m
i=1 αiA

i·(�), with 
∑m

i=1 αi = 1 and αi ≥ 0. Take x = (x1, . . . , xm, xm+1) ∈ Sm+1. Then, for any 
y ∈ Sn

x

(
A(�)
b�

)
y =

m∑
i=1

∑
j∈I�

(xi + αixm+1)aij(�)yj = x̂A(�)y, ∀ � = 1, . . . , k,

where x̂ = ((x1 + α1xm+1), . . . , (xn + αnxm+1)) ∈ Sm. Hence, MINMAXk(Ar) = MINMAXk(A).
A7 – Linear Consistency: Assume A7 is not satisfied. Therefore, there exists z= (z1, . . . , zk) ∈MINMAXk(A)

such that for all 0 < α < 1, (αz1 +(1 −α)z2, z3, . . . , zk) /∈ MINMAXk−1([αA(1) +(1 −α)A(2)], A(3), . . . ,
A(k)). Hence by Theorem 1, there is no (β1, β3, . . . , βk) ∈ S>

k−1 such that

β1αz1 + β1(1 − α)z2 + β3z3 + . . . + βkzk ∈ val(β1αA(1) + β1(1 − α)A(2) + β3A(3) + . . . + βkA(k)).

However, this contradicts that z is a minimax payoff vector, because by Theorem 1, there must exist 
(λ1, . . . , λk) ∈ S>

k , such that

k∑
�=1

λ�z� = val(λ1A(1) + . . . + λkA(k)).

The above contradiction proves that MINMAXk satisfies A7.

To finish the proof, it is enough to show that if {gk}k≥1 is an arbitrary family of point-to-set maps 
that satisfy A0, A1, A2 for k = 1, A4 and A7, then for any general multicriteria game given by a matrix 
A = (A(1), ..., A(k)), with A(�) ∈ Rm×n for all � = 1, ..., k, we get gk(A) ⊆ MINMAXk(A) ∀ k ≥ 1.

For k = 1, the axioms A0, A1, A2 and A4 characterize the val(·) function of a matrix game (see Carpente 
et al. [4, Theorem 2]). Therefore, g1(·) = val(·) = MINMAX1(·).
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Let z ∈ gk(A), k ≥ 2. Apply A7 (k− 1)-times to conclude that there exists α ∈ Rk, 
∑k

�=1 α� = 1, α� > 0, 
such that

k∑
�=1

α�z� = val(
k∑

�=1

α�A(�)).

Then, by Theorem 1, z is an extended minimax payoff vector of the game defined by A. Hence,

gk(A) ⊆ MINMAXk(A) ∀A, k ≥ 1. �
The above theorem also implies that MINMAXk is the largest map on D1 that satisfies Linear Consistency 

(A7), and that coincides with the value function on standard single criterion matrix games. Another char-
acterization of extended minimax payoff vectors using a different set of properties is possible. The rationale 
is to alternatively characterize the val(·) function and then to apply the consistency construction. This is 
possible based on Carpente et al. [4, Theorem 3].

Theorem 3. The set of extended minimax payoff vectors MINMAXk is the largest (w.r.t. inclusion) map on 
D1 that satisfies objectivity, column dominance, row dominance, column elimination, row elimination and 
linear consistency.

The proof runs similarly to that of Theorem 2, but using [4, Theorem 3] instead of [4, Theorem 2].

4. POSS in D2

This solution concept is independent of the notion of equilibrium, so that the opponents are only taken 
into account to establish the security levels for one’s own payoff. Therefore, this notion does not require to 
play the same strategy in all the scalar �-component games A(�), and thus is defined in the class D2.

Definition 6. Every strategy x ∈ Sm defines security levels v�I(x) as the payoffs with respect to each criterion, 
when II bets to maximize the criteria [10]. Hence,

v�I(x) = max
y∈Sn�

xA(�)y, � = 1, . . . , k, (4)

and the security levels are k-tuples denoted by

vI(x) = (v1
I (x), . . . , vkI (x)). (5)

We will use the notation vI(x, A) to specify such matrix A, whenever this is needed to avoid confusion. 
It must be noted that for a given strategy x for player I, the security levels vI(x) might be obtained by 
different strategies of player II. In [11] the concept of Pareto optimal security strategy (POSS) is defined in 
D1 as follows. It should be noted that the definition on D2 is the same.

Definition 7. A strategy x∗ ∈ Sm is a Pareto-optimal security strategy for I if and only if there is no x ∈ Sm

such that vI(x∗) � vI(x). Similarly, one can define POSS for II.
The set of Pareto-optimal security level vectors is the set of payoffs that can be attained by POSS, and 

will be denoted by VPOSSk(A(1), . . . , A(k)), thus

V POSSk(A(1), . . . , A(k)) = {z ∈ Rk : z = vI(x) for some x ∈ Sm and

� x′ ∈ Sm such that vI(x′) � vI(x)}. (6)
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The reader should observe that there are extended minimax values that cannot be obtained by Pareto-
optimal security level vectors. The reason is that POSS attain inferior payoffs by allowing the column player 
to change their strategies in the different criteria games. This fact will be made clearer in Section 6.

The following theorem provides a way to determine all POSS and their security level vectors.

Theorem 4. ([6, Theorem 3.1]) A strategy x∗ ∈ Sm is a POSS and v∗ = (v∗1 , . . . , v∗k) is its security level 
vector if and only if (v∗, x∗) is an efficient solution to the problem

min (v1, . . . , vk),
s.t. xA(�) ≤ (v�, . . . , v�), � = 1, . . . , k,∑n

i=1 xi = 1,
x ≥ 0, v ∈ Rk.

Equivalently, Voorneveld [23, Theorem 3.1] characterize POSS strategies as minimax strategies of par-
ticular classes of scalar games.

Theorem 5. ([23, Theorem 3.1]) A strategy x∗ ∈ Sm is a POSS for player I in the multicriteria matrix game 
A = (A(1), . . . , A(k)) if and only if there exists a vector α ∈ S>

k such that x∗ is a minimax strategy in the 
scalar matrix game M(α1A(1), . . . , αkA(k)) being M(α1A(1), . . . , αkA(k)) a matrix with m rows, labeled 
i = 1, . . . , m and nk columns, labeled c = (c(1), . . . , c(k)) with c(�) ∈ {1, . . . , n} for each � = 1, . . . , k. The 
entry in row i and column c = (c(1), . . . , c(k)) of M(αA) equals 

∑k
�=1 α�A(�)ic(�).

The reader may note that in the scalar case, VPOSS1(B) = MINMAX1(B) = val(B), and Theorems 4
and 5 coincide.

4.1. A characterization of Pareto-optimal security payoffs

In this section, we characterize the set of Pareto-optimal security payoffs defined on a general multicriteria 
two-person zero-sum game in D2. Thus, we try to identify a map (solution concept) that associates to any 
array of k matrices with the same number of rows a set of vectors in Rk, k ≥ 1.

Using the set of properties introduced in Section 3.1, we can obtain a characterization of the entire set of 
Pareto-optimal security payoff vectors as the maximal (in the inclusion sense) point-to-set map that satisfies 
A0, A1, A2, A4 and A6.

Theorem 6. The set of Pareto-optimal security level vectors V POSSk is the largest (w.r.t. inclusion) map 
on D2 that satisfies objectivity, monotonicity, column dominance, row dominance and consistency.

Proof. The proof is similar to Theorem 2, but using Theorem 5 instead of Theorem 1. First of all, we check 
that V POSSk satisfies the properties of objectivity, monotonicity, column dominance, row dominance and 
consistency.
A0 – Objectivity: Clearly, V POSSk satisfies A0.
A1 – Monotonicity: The security level vectors for the strategy x with respect to A are:

(maxy∈Sn1
xA(1)y, ...,maxy∈Snk

xA(k)) = (maxy∈ext{Sn1} xA(1)y, ...,maxy∈ext{Snk
} xA(k))

= (max{xA(1)}, . . . ,max{xA(k)}),

where max{xA(�)} denotes the maximum component of the vector xA(�). Note that this is true, because 
ext{Sn�

} (the set of extreme points of Sn�
) consists of the vectors whose ith component is one and the rest 

is zero, for i = 1, ..., n�. Analogously,
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vI(x,A) = (max{xA(1)}, . . . ,max{xA(k)}).

Now, since x ≥ 0, then xA(�) ≥ xĀ(�), for all � = 1, . . . , k. Hence, vI(x, A) ≥ vI(x, A), for each x, and the 
conclusion follows.
A2 – Column dominance: Let Ac(�)(�) be the matrix that results from adding to A(�) a new column H, 
that is dominated by a convex combination of the columns of A(�), i.e., Ac(�)(�) = (A·1(�), . . . , A·n�(k), H)
and there exists α1, . . . , αn�

≥ 0 such that 
∑n�

j=1 αj = 1 satisfying 
∑k

�=1 αjA
.j(�) ≥ H. Clearly, Ac(�)(s) =

A(s) ∀ s �= �. By construction,

v�I(x,Ac(�)) = max(xA·1
c(�)(�), . . . , xA

·n�

c(�)(�), xH) = max(xA·1(�), . . . , xA·n�(�)) = v�I(x,A).

Then, vsI(x, Ac(�)) = vsI(x, A) ∀ s, and thus vI(x, Ac(�)) = vI(x, A).

A4 – Row dominance: Let Ar =
(
A(1) . . . A(k)
b1 . . . bk

)
, b� = (b1� , . . . , b

n�

� ) ∈ Rn� , � = 1, . . . , k such that 

b� =
∑m

i=1 αiA
i·(�) with 

∑m
i=1 αi = 1 and αi ≥ 0. Take x ∈ Sm+1; then

vI(x,Ar) = (max xAr(1), . . . ,max xAr(k)).

The security level of Ar in the �-th component is

v�I(x,Ar) = max(
∑m

i=1 xiA
·1(�) + xm+1b

1
� , . . . ,

∑m
i=1 xiA

·n�(�) + xm+1b
n�

� )
= max(

∑m
i=1(xi + αixm+1)A·1(�), . . . ,

∑m
i=1(xi + αixm+1)A·n�(�)) = v�I(x̂, A),

where x̂ = (x1 + α1xm+1, . . . , xm + αmxm+1) ∈ Sm.
Then, for any x ∈ Sm+1, ∃ x̂ ∈ Sm, such that v�I(x, Ar) = v�I(x̂, Ar), ∀ �, and conversely.

A6 – Consistency: If A6 is not satisfied, then there exists z = (z1, . . . , zk) ∈ V POSSk(A) such that for all 
α ∈ (0, 1), (αz1 + (1 − α)z2, z3, . . . , zk) /∈ V POSSk−1(M [αA(1), (1 − α)A(2)], A(3), . . . , A(k)). Hence, by 
[23, Theorem 3.1], � (β1, β3, . . . , βk) ∈ S>

k−1 such that

β1αz1 + β1(1 − α)z2 + β3z3 + . . . + βkzk = val(M [β1M [αA(1), (1 − α)A(2)], β3A(3), . . . , βkA(k)]).

However, this contradicts that z is a payoff vector of a POSS, since by [23, Theorem 3.1] there must exist 
(λ1, . . . , λk) ∈ S>

k , such that

k∑
�=1

λ�z� = val(M [λ1A(1), . . . , λkA(k)]).

Thus, V POSSk satisfies A6.
To finish the proof, it is enough to show that, if {fk}k≥1 is an arbitrary family of point-to-set maps that 

satisfy A0, A1, A2, A4, and A6, then, for any general multicriteria game given by the matrix A = (A(�))�=1...k
with A(�) ∈ Rm×n� , we get fk(A) ⊆ V POSSk(A), ∀ k ≥ 1.

Indeed, for k = 1, the axioms A0, A1, A2 and A4 characterize the val(·) function of a matrix game (see 
Carpente et al., [4, Theorem 2]). Therefore, f1(·) = val(·).

Let z ∈ fk(A), k ≥ 2. Apply A6 (k−1)-times to conclude that there exists α ∈ Rk satisfying 
∑k

�=1 α� = 1, 
α� > 0, such that 

∑k
�=1 α�z� = val(M [α1A(1), . . . , αkA(k)]). Then, by [23, Theorem 3.1], z is a payoff vector 

of a POSS of the multi-matrix A. Hence, fk(A) ⊆ V POSSk(A) ∀ A, k ≥ 1. �
After a careful reading of the proof, one realizes that an alternative characterization is still possible using 

weaker versions of properties A0–A4.
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Corollary 1. If the properties A0, A1, A2 and A4 are required only for k = 1, the characterization of 
Theorem 6 still holds.

This corollary implies that V POSSk is the largest map on D2 that satisfies consistency (A6), and co-
incides with the value function on standard single criterion matrix games. Another characterization of 
Pareto-optimal security level vectors, using a different set of properties, is possible by alternatively charac-
terizing the val(·) function to then apply the consistency construction. This is possible thanks to Carpente 
et al. [4, Theorem 3].

Theorem 7. The set of Pareto-optimal security level vectors V POSSk is the largest (w.r.t. inclusion) map 
on D2 that satisfies objectivity, column dominance, row dominance, column elimination, row elimination 
and consistency.

5. Pairwise logical independence of the properties

This section shows that the previously presented characterizations use pairwise logically independent 
properties. In doing that, we will use some results from the literature and three additional evaluation maps.

First of all, we observe that since properties A0–A7 must hold for any k ≥ 1, it is enough to show that 
there exist evaluation maps, for particular choices of k, fulfilling only some of these properties. In most cases, 
this is possible for k = 1. We introduce three evaluation maps h0, h1, h2, defined on G1 =

⋃
m,p∈N

Rm×p, 
the space of the scalar zero-sum games, hi : G1 → R for i = 0, 1, 2, such that for any B ∈ G1:

h0(B) = 0, (7)

h1(B) = b11, (8)

h2(B) = min
1≤i≤row(B)

bi1, (9)

where row(B) is the number of rows of the matrix B.
A0: First of all, to show that objectivity (A0) is logically independent of the rest of properties, we use the 

null function h0. For k = 1, [17] proves that the null function satisfies monotonicity (A1), row dominance 
(A4), and row elimination (A5). It is also easy to see that h0 also satisfies column elimination (A3). However, 
h0 does not satisfy objectivity (A0). In addition, [22] proves using its function f4 that objectivity (A0) and 
column dominance (A2) are independent.

A1: For k = 1, the independence of monotonicity (A1) from column dominance (A2) follows from [22, 
Theorem 4]; from column elimination (A3) easily follows using our function h1; and from row dominance 
(A4) and row elimination (A5) is proved in [17] using its function f6.

A2: Function h1 satisfies column dominance (A2) but does not verify column elimination (A3) nor row 
elimination (A5). Besides, Theorem 4 in [22] proves that column dominance (A2) and row dominance (A4) 
are independent.

A3: Function h1 shows that column elimination (A3) and row dominance (A4) are independent. The 
function h2 satisfies row elimination (A5), but does not satisfy column elimination (A3). Moreover, [17]
shows with its function f4 that row dominance (A4) and column elimination (A3) are independent.

A6, A7: Finally, to prove that objectivity (A0), monotonicity (A1), column dominance (A2), column 
elimination (A3), row dominance (A4) and row elimination (A5) are independent of consistency (A6) and 
linear consistency (A7), we use the correspondences MINMAXk and V POSSk, respectively. Examples 2 and 3
show that MINMAXk does not satisfy Consistency (A6) and V POSSk does not satisfy Linear Consistency 
(A7), respectively.

Carpente et al. [4] show that the minimax value satisfies axioms A0–A5. We show in the next example 
that this solution concept does not satisfy Consistency.
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Table 1
Pairwise logical independence of properties.

A0 A1 A2 A3 A4 A5 A6 A7
A0 X h0 (7) f4 in [22] h0 (7) h0 (7) h0 (7) MINMAXk V POSSk

A1 X Th. 4 in [22] h1 (8) f6 in [17] f6 in [17] MINMAXk V POSSk

A2 X h1 (8) Th. 4 in [22] h1 (8) MINMAXk V POSSk

A3 X h1 (8) h2 (9) MINMAXk V POSSk

A4 X f4 in [17] MINMAXk V POSSk

A5 X MINMAXk V POSSk

A6 X V POSSk

A7 X

Example 2. Consider the 2-criteria game defined by the matrices A(1) = (1, 0), A(2) = (0, 1). Note that 
player I only has one pure strategy while player II has two pure strategies in this 2-criteria game. The 
minimax values of this game are (α, 1 − α), ∀ α ∈ [0, 1]. The reader may note that these values do not 
satisfy Consistence (A6). Indeed,

M
[
αA(1), (1 − α)A(2)

]
=

(
α, 1, 0, 1 − α

)
.

It is clear that the minimax value of the single criterion game with the above matrix is 1. Hence, it 
can not be a convex combination of (α, 1 − α), the minimax values of the original 2-criteria game, for any 
α ∈ (0, 1).

Example 3. (2 continued)
Consider the game given in Example 2, described by the two matrices A(1) = (1, 0), A(2) = (0, 1). For 

this game, the unique Pareto-optimal security payoff is (1, 1). Let us now consider the game given by the 
matrix:

αA(1) + (1 − α)A(2) = (α, 1 − α),

with 1/2 < α ≤ 1. The value of this game is α. Therefore, this security payoff does not satisfy the property 
of linear consistency for any α ∈ (0, 1), because α cannot be obtained as a convex combination of (1, 1). 
The reader may note that the minimax payoff (1, 0) does satisfy this property for α ∈ [1/2, 1].

Table 1 summarizes the pairwise logical independence of properties.

6. Relationship between minimax and POSS in D1 and D2

In this section we show the similarities between minimax (in D1) and POSS (in D2) by proving that, when 
a game in D2 is transformed into a game in D1, then the corresponding POSS transforms into minimax.

Firstly, the next results shows a transformation of a game in D2 into a game in D1, and how the 
corresponding strategies can also be transformed, keeping the same payoffs. The reader may note that this 
transformation is only of theoretical interest since it is not polynomial in the input size of the game A. 
Indeed, it requires to construct a game with an exponential number of strategies in D1 based on some form 
of amalgamation operation, as explained later.

Theorem 8. Every game A ∈ D2 can be transformed into a game Ā ∈ D1. Besides, given (x, y) strategies in 
A for players I and II, there exist (x̄, ȳ) strategies for I and II in Ā such that xAy = x̄Āȳ.

Proof. Given is A = (A(1), ..., A(k)), with A(�) ∈ Rm×n� ∀ � = 1, ..., k, which defines a game in D2. The 
strategy sets for players I and II are Sm and S(n1,...,nk).



1646 J. Puerto, F. Perea / J. Math. Anal. Appl. 457 (2018) 1634–1648
Consider Ā = (Ā(1), ..., Ā(k)), with Ā(�) ∈ Rm×
∏

� n� , which defines a game in D1, built in such a way 
that Ā(�)i,(j1,...,jk) = A(�)ij� , ∀ i = 1, ..., m, j� = 1, ..., n�, � = 1, ..., k. The strategy sets for players I and II 
are Sm (the same as in game A) and S∏ := {y ∈ R

∏
� n� :

∑
(j1,...,jk) y(j1,...,jk) = 1, y ≥ 0}.

Given two strategies x = (x1, ..., xm) ∈ Sm and y = (y(1), ..., y(k)) ∈ S(n1,...,nk), define x̄ = x and 
ȳ : ȳ(j1,...,jk) =

∏
� y(�)j� . Let us now prove that (x̄, ȳ) satisfy the conditions of the theorem.

– Clearly, x̄ ∈ Sm. Let us prove that ȳ ∈ S̄∏.∑
(j1,...,jk) ȳ(j1,...,jk) =

∑
(j1,...,jk)

∏
� y(�)j� =

∏
�

∑
j�
y(�)j� = 1.

– Now, let us check that xAy = x̄Āȳ. For this purpose, we need to prove that xA(�)y(�) = x̄Ā(�)ȳ, ∀ � =
1, ..., k. Take � ∈ {1, ..., k}. Because xA(�)y(�) =

∑
i xi(A(�)y(�))i, and x̄Ā(�)ȳ =

∑
i x̄i(Ā(�)ȳ)i =∑

i xi(Ā(�)ȳ)i, the proof of this statement reduces to check that (A(�)y(�))i = (Ā(�)ȳ)i, ∀ i = 1, ..., m.
1. (A(�)y(�))i =

∑
j�
A(�)i,j�y(�)j� .

2.

(Ā(�)ȳ)i =
∑

(j1,..,jk) Ā(�)i,(j1,...,jk)ȳ(j1,...,jk)

=
∑

(j1,..,jk) A(�)i,j�
∏

�′ y(�′)j�′
=

∑
j�

(
∑

J\j� A(�)i,j�
∏

�′ y(�′)j�′ )
=

∑
j�
A(�)i,j�y(�)j�(

∑
J\j�

∏
�′ �=� y(�′)j�′ )

=
∑

j�
A(�)i,j�y(�)j�(

∏
�′ �=�

∑
j�′

y(�′)j�′ )

=
∑

j�
A(�)i,j�y(�)j� = (A(�)y(�))i,

where J is sometimes used to denote the complete vector of indexes (j1, ..., jk).
This proves that (Ā(�)ȳ)i = (A(�)y(�))i ∀ �, i, and therefore xAy = x̄Āȳ. �

Let us denote by D̄1 the class of games in D1 that can be obtained from a game in D2 as in Theorem 8. 
The following lemma states that strategies in a game in D̄1 can be transformed into strategies in the 
corresponding game in D2, keeping the same payoffs.

Lemma 1. Let A be a game in D2, and let Ā be its corresponding transformation into a game in D̄1. Let 
(x, ȳ) be a pair of mixed strategies for players I and II in game Ā. Then, there exists a pair of strategies 
(x, y) for the game A such that xĀȳ = xAy.

Proof. Let (x, ȳ) ∈ Sm × S∏ be a pair of strategies for game Ā. Build y = (y(1), ..., y(k)) so y(�)j =∑
(j1,...,jk):j�=j ȳj1,...,jk , for j = 1, ..., n�, � = 1, ..., k. Clearly, 

∑
j�
y(�)j� = 1, and all such components are 

positive, therefore y ∈ S(n1,...,nk).
Let us now prove that both payoffs are equal. Take one of the criteria, �. We have that xĀ(�)ȳ =∑
i

∑
J xiĀ(�)i,J ȳJ , and xA(�)y =

∑
i

∑
j�
xiA(�)i,j�yj� . The following equation proves that both payoffs 

are equal: ∑
J

Ā(�)i,J ȳJ =
∑
J

A(�)i,j� ȳJ =
∑
j�

A(�)i,j�
∑

J\{j�}
ȳJ =

∑
j�

A(�)i,j�yj� . �

Example 4. Applying the transformation in Theorem 8 to the game in Example 1, the new payoff matrix 
is: Ā = (Ā(1), Ā(2)), with:

(Ā(1), Ā(2)) =
((

0 0 0 −1 −1 −1
1 1 1 0 0 0

)
,

(
−2 0 0.5 −2 0 0.5
−1 0 1 −1 0 1

))
.
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Note that this new game has two criteria, two strategies for player I, and six (3 ×2) strategies for player II. 
The strategy sets for the players are therefore S2 and S6.

The next theorem is the main result of this section, and states that POSS strategies in D2 can be 
transformed into minimax strategies in D̄1, and vice versa.

Theorem 9. Let A be a game in D2, and let Ā be its corresponding transformation into a game in D̄1. Then 
we have that (x∗, y∗) is a pair of POSS in game A if and only if (x∗, ȳ∗) is a pair of minimax strategies in 
game Ā, where ȳ∗ ∈ S∏ is obtained from y∗ ∈ S(n1,...,nk) as in Theorem 8.

Proof. Let us prove both implications.

1. Let us first prove that x∗ is a POSS for I in A if and only if x∗ is minimax for I in Ā. For any strategy 
of player II, the worst payoff player I can obtain from A(�) is the same as the worst payoff he/she can 
obtain from Ā(�) (note that the columns of Ā(�) are the same as in A(�), but repeated and in different 
order). And therefore the concept of POSS for I in A, and the concept of minimax for I in Ā coincide.

2. Now let us prove that y∗ is POSS for II in A if and only if ȳ∗ is maximin for II in Ā. Because the 
payoffs are the same in both games, that is, for any x ∈ Sm, xA(�)y∗ = xĀ(�)ȳ∗, we have that for any 
strategy of I, the worst payoff player II can obtain from A is the same as the worst payoff player II can 
obtain for Ā, and therefore the concept of POSS for II in A coincide with the concept of maxmin for II 
in Ā. �

Yet another characterization of the set of Pareto-optimal security level vectors is possible. This new 
characterization is a by-product of Theorems 8 and 9, above.

Corollary 2. The set of Pareto-optimal security level vectors V POSSk is the largest (w.r.t. inclusion) map 
on D̄1 that satisfies objectivity, column dominance, row dominance, column elimination, row elimination 
and linear consistency.

Proof. By Theorems 8 and 9 every A ∈ D2 can be transformed into Ā ∈ D̄1 such that (x∗, y∗) is a POSS 
in A with value x∗Ay∗ if and only if (x∗, ȳ∗) is a extended minimax in Ā and x∗Ay∗ = x∗Āȳ∗. Therefore, 
VPOSS in D2 are v-minimax in D̄1. Next, we can apply Theorem 3 to the set D̄1 and the results follow. �
7. Conclusions

In this paper, we study minimax and POSS strategies, two well-known solution concepts already de-
fined in the literature. Whereas for minimax strategies both players need to play the same strategy in all 
scenarios, POSS strategies allow the column player to play different strategies in different scenarios in or-
der to improve his/her security levels. Two axiomatic characterizations for these solution concepts in their 
corresponding domains, that share all axioms but one, show that minimax and POSS strategies are very 
similar to each other. Comparing Theorems 2 and 7, we realize that Pareto-optimal security level vectors 
and extended minimax payoff vectors differ only in the way in which solution payoff vectors from k-criteria 
games are transformed into solution payoff vectors games with (k−1) criteria (consistency properties). The 
former requires to amalgamate strategies in a game with lower dimension, and the latter requires convex 
combinations of payoff matrices. Besides, we have also shown that POSS strategies can be transformed into 
minimax strategies, in their corresponding domains.
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